Java Advanced Course

11

JAVA ADVANCED COURSE

Requirements: Java Expert Course.

1. Data Structures

Java provides some objects that helps to manage data structures.

The Stack object implements the LIFO stack memory buffer, offering the standard push(object) and pop() methods, but also the peek() and search(object) methods.

Notice that the JRE uses a stack memory to store local variables used in the method body, in this way when a method forwards the action to another method, the “last” local variables will be stored on the top of the stack, and discarded as soon as Java returns from the “last” method.

· Analyse the Advanced01 applet, showing some common methods offered by the Hashtable and Enumeration objects.

A subclass of Hashtable is the Properties class, used to define the main settings for the Java Enviroment, as ordinary INI files on Windows systems. Each application can load the Properties object from a FileInputStream, or use the default system properties, which can be retrieved using the command:

Properties system = System.getProperties() ;
Notice that if there is a security manager this call may result in a security exception. Sometimes, if the security manager does not permit the getProperties operation, it may choose to permit the single getProperty(key) operation on some keys.

When the getProperty(key) method is called, Java first looks for the key in the application’s properties, then, if the key is not found, it looks in the System.properties object.

· Analyse the Advanced02 application, showing the common usage of the Properties object.

Another useful class is the StringTokenizer object, offering three constructors:

StringTokenizer tok = new StringTokenizer(String s);

StringTokenizer tok = new StringTokenizer(String s, String d);
StringTokenizer tok = new StringTokenizer(String s, String d, boolean delim);
The first allows to cut the String s into several tokens, using the default string separators (blank space, tab, newline, carriage-return, form feed), while the second allow to specify a new delimeters.

For example, in order to split the phrase “This is a_strange_grammar ” into tokens, we could create:

StringTokenizer tok = new StringTokenizer(s,” \t\n\r\f_”);
Setting true in the last constructor means that the delimiters char’s will be considered as tokens.

Exercise 1: write the Advanced03 application. This application reads a phrase from System.in and parse it into tokens considering “*” as the delimiters. Then he must cut all the words in the phrase to the length of the shortest word, and print on screen these tokens in reverse order (the last token for first, the first token for last).

2. Multithreading – part 1

A thread is a “sub-task” of a single process. This means that the CPU will execute each process (or task) into a separate context, but the different threads belonging to the same process will run in the same context, i.e. they share objects and settings. To create a thread, following steps are necessary:

Part one: write the thread
1. Create a class implementing the Runnable interface.

2. Add one Thread object as a class’s attribute (field) for you class.

3. Implement the method run() into your class (this points the “beginning” of your thread).

Part two: run the thread
4. After creation of your class, create the thread using: thread = new Thread(<your class>).

5. Set the thread on your class by calling: <your class>.theThread = thread.

6. Run the thread calling thread.start(), where thread it is the object created at point 1.

7. When finished, stop the thread by changing his state.

It is possible to extend the Thread class (in this way steps 1, 2, 4 must be skipped) and call the method start() directly on your class, but this means to rule out any other “hierarchy issue”, since in Java a class can have only one parent class. That’s why the Runnable interface is more used.

Remark: the code lines below a call to start() will be executed asynchronously with respect to the start() body, which means that it is not possible to foreseen which code will be executed first.

· Analyse the Advanced04 application, which allows the user to choose among 4 menu entries: start a new Thread; stop a Thread; list all active Threads; monitor all Threads.

Notice that the application shows an example of asynchronous behaviour of concurrent threads.

Some methods helps to synchronise different threads. The yield() method pauses (just few milliseconds) the thread on which is called in order to allow other threads to gain more “CPU time”, in this case high priority threads gain more “CPU time” than low priority threads.

The join() method does the opposite job. The thread that calls this method will stop and wait until the target thread has finished running. Let’s consider: targetThread.join(1000) ;
In such a case, the code block containing this code will stop for 1000 ms, lending his “CPU time” to the targetThread object. If after 1000 ms the targetThread object is not ended, the join() call will be completed and the line next to this call will be executed.

· Exercise 2: write the Advanced05 application, which must implement the Runnable interface and a run() method similar to the Advanced04 run method. Moreover, this class must be able to call a join() on a different thread.
Notice: to run this application it is necessary to complete next exercise.
· Exercise 3: write the Advanced06 application, which must offer the same menu included in the main() method of Advanced04 but managing two type of threads: Thread-like (Advanced04) and Runnable-like (Advanced05). Thread-like threads must have names T010, T011, T012 etc., while Runnable-like threads must have names R001, R002, R003 etc, where 1,2,3 must be equal to the priority of the runnable-thread itself.

Add a new feature to this menu: the user can select a runnable-like and a thread-like. Then the application must force the runnable-like to call join() on the thread-like.

3. Multithreading – part 2

Other few notes about multithreading:

· When a new thread is created by default it has same priority of the “parent” thread.

· If a new thread is created by a daemon thread, by default, it will be a daemon too.

· The ThreadGroup class allows to manipulate threads as a whole (see Javadoc’s).

When different threads access the same resources it is not possible to make sure synchronisation, hence funny result can appear. For example, if two different threads access the same class field in order to read the value and update it, it can happen that the 2nd thread reads this field after the 1st thread, but before the 1st thread has updated this field. This leads to inconsistent state.

· Analyse the Advanced07 application introducing the synchronized attribute for methods.

Another way to obtain synchronisation is using the monitor of the object.

Each object has a special bit called monitor, which holds two values: available or not available. When a synchronized method is called on a object, that object’s monitor is set to not available. When the synchronized method ends, the monitor is set back to available.

Mind that the object is not available even if only one synchronized method is running (since the JRE does not known how many other methods could be called by the running method).

By this mechanism a synchronized method is executed only once thread time by time.

It is possible to lock the object’s monitor (i.e. set to not available) using following code:

	synchronized (theObject) {

 …

}

In this example the synchronized statement means that the current thread will own the monitor of the theObject object, where theObject can be any Object class. In other words the previous statement is equivalent to call a synchronized method on theObject instance.
Remark: take care if manipulating theObject inside the synchronized code-block, remember that some objects are destroyed each time they’re update (e.g. the String class).

When a thread owns the object’s monitor the thread is allowed to call these methods on the object:
· wait(): the thread executing this call will be suspended until another thread calls notify() on the same instance, and will release immediately the object’s monitor.
· notify(): looks for the 1st thread “waiting on this object” and awakes it.

This will occur only after that the “active” thread has released the monitor ownership.
· notifyAll(): as notify(), but releases all threads waiting for this object.

Exercise 4: write the Advanced08 application, containing the SingleThread helper class.

The main Advanced08 thread must start two threads of SingleThread class, then it must stay alive in order to increment a timer, acting as a common clock for the other two threads. Moreover the application must include a synchronized code block (defined on a reference object) and a synchronized fooMethod(int sleepTime), which just sleeps for a sleepTime.

The SingleThread class must run in two modes: in mode-0 it calls the synchronized code block defined in the application, which must include a call to wait() on the reference object.

In mode-1 it first calls fooMethod(), then it calls the synchronized code block skipping the wait() line. Then, just before ending, it must call notify() on the reference object.

4. Advanced Applets

Inserting a loop into the start() method does not provide real animation: the applet is not started until it ends the start() method, so it’s not possible to provide independent animation.

This problem is solved by running a new Thread into the applet.

By this mechanism we have two different threads: the first one (managed by JRE) takes care to listen for user’s actions and forwards execution to the listeners, while the second (managed by the programmer) minds about the animation.

To customize applets it’s handy to insert parameters in the Applet HTML tag:

	<APPLET WIDTH=800 HEIGHT=400 CODE=adriani.tutorial.advanced.Advanced09>

<param name="color"
value="FF50AA">

</APPLET>

In this way the applet can use getParameter(name) to retrieve these settings.

Moreover, to test applets can be useful to rely on the appletviewer tool, by calling:

appletviewer ..\html\Applet.htm
· Analyse the Advanced09 applet. This applet retrieves some parameters from the HTML file, then creates an array of Advanced10 objects representing some pictures.

The applet starts a new thread to move these objects on the surface.

The Observable class helps to implement communication from different objects, in a very similar way of the Listener mechanism:

1. Design one Observable class. When this class changes state the programmer must call setChanged() to set the “changed” flag on this object. In this way, when another code block finds the command notifyObservers(arg) the notification will be sent to all “registered listeners” of this observable.

2. Implement one (or more) Observer interface, then register them by executing the call observable.addObserver(). When the notifyObservers(arg) is called, all the update() methods of the registered observers will be automatically executed.

Notice that calling notifyObservers(arg) cleans the “changed” flag of the Observable, so it is possible to monitor and control completely the notification’s status.

An example of the Observable – Observer mechanism is the MediaTracker class.

Usually Java takes longer to load an image from file than to draw it, for this reason the call:

boolean isDone = graphic.drawImage(image, x, y, null) ;
can return false to notify that was not possible to draw the image. The MediaTracker class is a type of Observer that “keeps an eye” on the image loading process, allowing the programmer to wait for the image to be available before trying to draw it.

Exercise 5: write the Advanced10 class, extending Observable and implementing Observer.

The updatePosition() method must take care to update the x and y of the picture, providing different moving criteria for the ordinary picturs and the glass picture.

If the GIF picture is not availble, this class must draw a filled circle in the paint() method.

5. More Data Structures

When it’s necessary to use a lot of booleans it’s a good practise to store them directly using int types, to have better performance. When stored in this format, booleans variable can be manipulated by the bitwise operators. Let’s consider n = 5 (00000110) and some examples:

	Operator
	Name
	 Example
	 Result

	
	Complement
	 n
	-6 (11111001)

	&
	AND
	(n & 4)
	4 (00000100)

	|
	OR
	(n | 8)
	14 (00001110)

	^
	XOR
	(n ^ 4)
	2 (00000010)

	<<
	Left shift
	(n << 1)
	12 (00001100)

	>>
	Right shift (signed)
	(n >> 1)
	3 (00000011)

	>>>
	Right shift (unsigned)
	(n >>> 1)
	3 (00000011)

Notice that these operators allow the shorthand syntax :
Example: it’s possible to write (a |= b) instead of (a = (a | b)).

In order to avoid handling a big number of int types Java offers the java.util.BitSet class, that’s is can be thougth like a Vector (dynamic size) of int types.

· Analyse the Advanced11 application. The application takes two integer numbers as input, convert them into the binary format and performs the sum operation (using the BitSet object).

Other useful data structure classes are:

· Pipes: There are two types of pipes: PipedInputStream and PipedOutputStream.

They works like ordinary streams, so it’s possibile to write/read data from them, but they do not provide persistence on the hard disk. They are useful when it’s necessary to communicate between different threads: in such a situation pipes allow sending and receiving data without the need of sharing disk files.

· StringReader: class allowing to read data from a String as from an InputStream.

· RandomAccessFiles: this class allows to read/write disk files from any position within a file.

Positions are counted considering single bytes so it’s necessary to know the data type in order to move the “cursor” on the right position. For example, if the file contains int types:

fileName.seek(n * 4L) ;

// Throws IOException’s
moves the “cursor” on the nth element in the file (int types are 4 bytes long).

The offset of the first record in the file is 0 (as usual).

Exercise 6: write the Advanced12 class by extending Advanced11. The application must implement the Runnable interface in order to manage two different threads (i.e. one for each instance).
1. The Listener: this thread asks to the user to insert two values: row and index. Then it communicates these data to the Browser and reads the result from a common pipe.
2. The Browser: when receives data from the Lister, this thread opens a TXT file and seeks for the rowth line and the indexth character, and writes it in the common pipe.
Finally this class must print on the screen the binary rapresentation of that char (or word).
6. Networking

To fetch data from the web it’s necessary to use the java.net.URL object:

	URL url = new URL(”http://www.javasoft.com”) ;
Object urlContent = url.getContent();

The urlContent object contains the document specified by the URL. This object can be of different tpyes, but usually it’s an extension of the InputStream class.

· See the Advanced13 application, representing a very simple text-based HTTP browser.

The Advanced13 class introduces a problem of the AWT package. When we press the “Show” button the main thread does not exit from the actionPerformed() execution, so the GUI is blocked and the user can not click on another button while the browser is reading data.

This problem could be solved by managing two threads: one for the browser’s GUI, another for the “fetching data” code block.

A general java connection over the network is represented by the java.net.Socket class.

7. Mastering Java

When you install Java on your PC (let’s assume Windows) we get following enviroment:

· HKEY_CLASSES\ROOT\jarfile\shell\open\command: executing a JAR file

When you double-click on a JAR file this registry entry links to the JRE to be executed, for example: "C:\Programs\Java\j2re1.4.2\bin\javaw.exe" -jar "%1" %*
This value is stored in a REG_SZ registry type, in a predefined entry.

· HKEY_CLASSES\ROOT\java_auto_file\shell\edit\command: editing a JAVA file

When you double-click on a JAVA file this registry entry links to the editor or IDE to be opened, for example: C:\Programmi\Textpad\TextPad.exe "%1"
This value is stored in a REG_SZ registry type, in a predefined entry.
· HKEY_LOCALMACHINE\SOFTWARE\JavaSoft\Java Development Kit\1.4:

The location of the SDK (if any), for example: C:\j2sdk1.4.2
This value is stored in a REG_SZ registry type, in the JavaHome entry.
· HKEY_LOCALMACHINE\SOFTWARE\JavaSoft\Java Plug-in\1.4:

The location of the Browser Java plug-in, for example: C:\Programmi\Java\j2re1.4.2
This value is stored in a REG_SZ registry type, in the JavaHome entry.

There are two REG_DWORD registry entries for defining the Browser settings:
· HideSystemTrayIcon: set to 1 (Hex) for hidding the system tray (???)
· UseJava2IExplorer: set to 1 (Hex) for using the Java2 (???)

· HKEY_LOCALMACHINE\SOFTWARE\JavaSoft\Java Runtime Enviroment\1.4:

The location of the JRE, for example: C:\Programmi\Java\j2re1.4.2
This setting is specified by two REG_SZ registry entries:
· JavaHome: for example set to C:\Programmi\Java\j2re1.4.2

· RuntimeLib: for example set to C:\Programmi\Java\j2re1.4.2\bin\client\jvm.dll
The PATH system variable specifies only the Java location used by other applications, like Tomcat or Ant. In this case it’s a good practise to insert this command into a Batch file, for example:

SET JAVA_HOME=C:\j2sdk1.4.2

But such a command will work only if we set the PATH variable to C:\j2sdk1.4.2\bin (for example) before setting the Java_Home variable!

So we have six points where to configure Java (see above):

1. Executing JAR: executed by the JRE specified in the open setting.
2. Editing JAVA: opened by the editor specified in the edit setting.
3. Standard SDK: specified by the SDK location in the Java Devolpment Kit setting.
4. Applets: executed by the JRE specified in the Java Plug-in setting.
5. Command Line: the java –version is specified by the Java Runtime Enviroment.
6. Applications: executed using the JRE specified in the PATH variable.

Stefano Adriani © 2003 – 2022

adriani.altervista.org

