
JAVA EXPERT COURSE
Lectures: 12 hours with 20 exercises

Requirements: Java Basic Course; SQL basic concepts.

Lecture THEORY PRACTISE

1
Object Oriented Programming: class types,
attributes and methods (static and final). None

2
Constructors, accessors and mutators. The
this() constructor.

Expert01: overloading constructors.
A simple call to this().

3
Hierarchy: the super() constructor. Casting
objects and testing the polymorphysm feature.

Expert02: super() and shadowing.
Expert03: heritage, casting and back-
casting.

4

Packages and access types.
The classpath variable.
Overriding access types.

Expert04: main class for testing.
Expert05: sample “parent” class.
Expert06: sample “child” class.
Expert07: testing outside package.
Expert08: extending outside package.

5 Managing streams: the java.io package.
Writing, reading and formatting data on file.

Expert09: managing the InputStream
and OutputStream.

6 JDBC Connections: executing SQL
statements, defining JDBC Drivers, retrieving
database meta information.

Expert10: basic JDBC connections.
Expert11: executing a simple
Statement and reading a ResultSet.

7 JDBC Statements: executing queries and
reading data from a ResultSet object.

Expert12: creating tables and using the
executeBatch() method.

8 JDBC Data: prepared statements, scrollable
results, positioned updates, and data streams.

Expert13: prepared statements.
Expert14: positioned updates.
Expert15: reading data streams.

9
The AWT package: the appletcation and the
Frame object: paint(), repaint(), Canvas
and FontMetrics classes. Drawing pictures.

Expert16: a simple appletcation.
Expert17: using graphic.drawXXX().

10 Adding an AWT Menu object on a GUI.
Managing the Frame object.

Expert18: a frame with a classical
menu: File, Edit and Help.

11
Using the FileDialog object and the File
class.

Expert19: opening a FileDialog.
Expert20: using the File object.

12
Miscellaneus: OOD, the Garbage Collector
and the JavaDoc tool. None

1. Object oriented programming (1h)
 Types of classes (page 33, 34); attributes (page 35,36); using methods (page 37,38).
 Quick review of the methods implementation (page 39,40: already seen in Basic Java Course)

2. Constructors (1h)
 Review of the methods naming (page 41,42: topics left uncompleted in Basic Java Course).
 Constructors (page 47,48): the this() constructor.
 Exercise: write the Expert01 application, which must have:
 One array int[] dimensions as a class level attribute (having length = 2).
 One constructor having signature Expert01(int[] dimensions).
 The main() method must create two objects: the first using new Expert01(), the second

using new Expert01 (int[] dimensions). If there are arguments for the main() method,
the constructor must use these values to set the “dimensions” attribute.

 The application must print the state (i.e. the “dimensions” value) of these two objects.

3. Hierarchy
 Hierarchy concepts (page 49,50): the super() method and the super qualification.
 Casting (page 51,52).
 Analyze the Expert02 application, which extends Expert01 and discuss shadowing.
 Exercise: write the Expert03 application, which must define and create 3 helper classes: Adam,

Man and Woman, where Adam is the parent class for Man and Woman. The children must override
one parent’s method and introduce a new method. Then try all different possible casting.

4. Packages and access types (1h)
 Packages (page 53, 54): connections between package and the import statements.
 Access types (page 55, 56): discussing public, package, protected and private access.
 Analyze the Expert04 application, which shows how different access types are available with

respect to “child” or “not child” classes, and “same packages” or “not same packages” classes.
Note that this application includes also the Expert05 and Expert06 classes.

 Exercise: write the Expert07 application, which works as Expert04 but for classes in a
different package (Hint: create the Expert08 class, extending Expert06 in a different package).

5. Managing streams
 Managing data streams (page from 61 to 64): byte-based streams and character-based streams.
 Data Formatting (page 65, 66): the PrintWriter class and the portable data classes.

 Exercise: write the Expert09 application. The application must read data from 1 input text file
using 2 different systems: BufferedInputStream and BufferedReader. Then the application
writes these data on 2 output files using BufferedOutputStream and BufferedWriter.
Moreover, the application counts the number of steps of these input/output process, multiplies
these 2 values, stores the result in a file using DataOutputStream and later retrieves it.

6. JDBC Connections
By calling DriverManager.getConnection(“jdbc:<subprotocol>:<subname>”), the
DriverManager class finds a Driver object, call the method Driver.connect() and return the
connection (in this example “jdbc” is the protocol definition).
The subprotocol can specify the name of the mechanism (which could correspond to many drivers
for the same DBMS) or the naming service (DNS, NIS or DCE) used to map to the actual DBMS.
The subname specifies the data source, using a syntax depending on the subprotocol, for example:
(Remark: only the ODBC subprotocol allows to specify parameters after the subname)

jdbc:<subprotocol>://<hostname>:<port>/<data source>

The Connection object allows 3 different ways to execute statements:
 Statement: created by Connection.createStatement(): a standard SQL query.
 PreparedStatement: created by Connection.prepareStatement(): useful to use many times

the same statement, each time specifying different input parameters.
 CallableStatement: created by Connection.prepareCall(): useful to call DBMS stored

procedure (server-side functions), handling many output parameters.

By default JDBC works in auto-commit mode, i.e. commit() is executed automatically after each
statement. When using transactions (setting auto-commit to false) it is necessary to mind about
transaction isolation levels, which define how to manage concurrency transactions. For example:

connection.setTransactionIsolation(TRANSACTION_READ_UNCOMMITTED);

Moreover the JDBC support the SQL3 paradigm, which implements User Defined data Types
(UDT), Structured data types and DISTINCT data types. For more information see related
documentation (“Using Type Maps”).

 Analyze the Expert10 application to have a first example of the JDBC paradigm.

Programmers can write new Driver classes, which must contain a static initializer that calls
DriverManager.registerDriver passing an instance of the Driver as the parameter. In such a
case, the best way to obtain this driver later is calling Class.forName("mypackage.Driver").
Alternatively, the Driver class could be added to the java.lang.System property jdbc.drivers:

jdbc.drivers=foo.Driver:steve.sql.Driver:morpheus.test.MyDriver (3 drivers)

In this case, the first call to a DriverManager method will automatically cause these driver classes
to be loaded. Note that this second way of loading drivers requires a preset environment.
JDBC allows 3 ways to execute the statement object:

 executeQuery(): designed for statements producing a single result set, such as SELECT.
 executeUpdate(): for INSERT, UPDATE or DELETE, but also for Data Definition Language

(DDL) statements such as CREATE TABLE, DROP TABLE or ALTER TABLE.
 execute(): statements that return more than one result set, more than one update count, or a

combination of the two (advanced tecnique, seldom necessary).

 Exercise: write the Expert11 application, which must query a simple table from an Access
database, print column names and all rows in the table, retrieving any data as a String type.
Hint: define a static display() method to show data, it will be useful during next exercises!

7. 7. Reading data from Result Set
The ResultSet object is usually not updateble nor scrollable. This means that a ResultSet uses a

cursor to point the current row, which can be moved only forward for many DBMS (i.e.
ResultSet.TYPE_FORWARD_ONLY is the default). If the DBMS supports scrollable results, this
cursor can be moved using: previous, first, absolute, relative, afterLast etc.

Remember that all methods for executing a statement close the current Statement's result set (if
open). This means that any processing of the current ResultSet object needs to be completed
before a Statement object is re-executed. Here there are 3 different ways to count the number
of rows (the 1st holds only for scrollable DBMS) :

rs.last();
int count=rs.getRow();

rs = stmt.executeQuery(
 "SELECT COUNT(*) FROM …");
rs.next();
int count = rs.getInt(1);

int count = 0 ;
while (rs.next()) {
 count++;
}

Rows are read using ResultSet.getXXX methods. To ensure portability with “forward only result
sets”, values should be read from left to right and column values should be read only once.
The method getObject() will retrieve any data type, hence it is very useful when the information
about the DB are uncomplete. Moreover this method is the only one that allows custom mapping.
There are 3 possible cases about custom mapping:

 DISTINCT type with standard mapping: use the appropriate getXXX() method
 DISTINCT type with custom mapping: use the getObject() method
 SQL STRUCTURED type: use the getObject() method

Here it is the table of the recommented method for each data type:
TINYINT getByte() BIT getBoolean()
SMALLINT getShort() CHAR getString()
INTEGER getInt() VARCHAR getString()
BIGINT getLong() LONGVARCHAR getAsciiStream()
REAL getFloat() (ditto) getUnicodeStream()
FLOAT getDouble() BINARY getBytes()
DOUBLE getDouble() VARBINARY getBytes()
DECIMAL getBigDecimal() LONG VARBINARY getBinaryStream()
NUMERIC getBigDecimal() CLOB getClob()
DATE getDate() BLOB getBlob()
TIME getTime() REF getRef()
TIMESTAMP getTimestamp() STRUCT getObject()
ARRAY getArray() JAVA OBJECT getObject()

ResultSet can have following attributes:

 TYPE_FORWARD_ONLY: nonscrollable; The view of the data depends on the DBMS.
 TYPE_SCROLL_INSENSITIVE : scrollable; it does not show changes to the underlying database

that are made while it is open.
 TYPE_SCROLL_SENSITIVE: scrollable; if data are modified, the new values are visible, thus

providing a dynamic view of the underlying data.

 Exercise: write the Expert12 application, which must create 2 tables (PEOPLE and TASK) and
populate these tables using the method statement.executeBatch().

8. Updating data in the ResultSet
The ResultSet can have following concurrency types:

 CONCUR_READ_ONLY: this ResultSet cannot be updated programmatically and allows only read-
only locks (i.e. there can be any number of concurrent users if the DBMS and driver allow it).

 CONCUR_UPDATABLE : this ResultSet can be updated programmatically and allows write-only
locks, so that only one user at time has access to a data item.

The preparedStatement object it is useful when executing many times the same query with
different parameters. To aknownledge if the DBMS supports these features use:

 DatabaseMetaData.supportsResultSetType(int)
 DatabaseMetaData.supportsResultSetConcurrency(int, int)
 ResultSet.getType()
 ResultSet.getConcurrency()

 See the Expert13 application for some examples.

If the ResultSet is CONCUR_UPDATABLE it is possible to update, delete or insert data in the DB:

UPDATE INSERT
rs.updateXXX(<column>, <value>) ;
…
rs.updateRow() ;

rs.moveToInserRow() ;
rs.updateXXX(<column>, <value>) ;
…
rs.updateRow() ;
rs.first() ;

Where the column index refers to the column number in the result set, not the column number in the
database table, which is usually different (think about the SELECT syntax). Moreover, it is important
to call updateRow() before moving the cursor to another row, otherwise any update will be lost.
The update features are not supported by all DBMS, following requirements are often necessary:
 The query references only to a single table in the database
 The query does not contain a join operation or a GROUP BY clause
 The query selects the primary key of the table it references

Similar criteries holds for the insertRow() method:
 The user has read/write database privileges on the table
 The query selects all the nonnullable columns in the underlying table
 The query selects all columns that do not have a default value

Sometimes a DBMS present a ResultSet that seems to be CONCUR_UPDATABLE, but it is not!
In such a case the positioned updates methods may be used (see SQL specifications).

 Exercise: write the Expert14 application, which must show all data from table PEOPLE and
allow the user to choose and delete one row. Then this application must read data from the table
TASK and look for NULL values.

 Exercise: write the Expert15 application, which must test and compare the methods for
retrieving very large row values, such as getBinaryStream()and getAsciiStream().

1. Basic AWT
Using AWT it is possible to create an “appletcation”, a mix of an applet and application.
To obtain this result just follow three steps:

1. Insert a main() method into the applet, to be run when the applet is used as an application.
2. Insert into the applet a subclass of Frame, which containes the applet as a class attribute.
3. If you want your frame to behave as a real window it must implement WindowListener.

We’ll discuss about the Frame class in the next lecture (“Basic Menu’s”)

 Analyze the Expert16 appletcation.

There are three main methods for managing the appearance of AWT’s objects:
 paint(): here the programmer must implement all the code regarding the appearance.
 repaint(): called by the programmer when it is necessary to refresh the appearance.
 update(): called by the VM to refresh the appearance.

Notice that the programmer must never call paint() nor update() himself: anytime this is
necessary the programmer must call repaint()instead. As soon as possible (considering other
windows, other repaint() calls etc.) the VM will evaluate all pending repaint() calls and will
call update() to actually refresh the component appareance.
In 99% of situations the programmer can forget about update(), but in certain cases it could be
necessary to override this method to improve graphics performance.

Some quick hints/notes about some main AWT components:
 Canvas: to use a Canvas object is mandatory to create a child that overrides the

getMinimunSize() and getPreferredSize() methods.
 FontMetrics: useful when using drawString() on AWT components (see page 46).
 Applet: comments about calling init() and playing audio files.

Using the API of the graphics class is possibile to draw many different objects: lines, rectangles,
circles, arcs and polygons. For example, to draw a line just use graphics.drawLine().
Notice that to draw a ticker line it is necessary to run a for-cycle in order to draw a set of parallel
lines (each 1 pixel wide).

Showing images on a Applet is even easier, we need only following code:

Image image = getImage(URL address, "name.jpg") ;
graphic.drawImage(image, x, y, this) ;

Exercise: write the Expert17 applet, which must draw or show the following figures:

 an empty green rectangle having round borders.
 a filled orange oval having black borders.
 a polygon drawing a red five-ends star.
 an image loaded from a JPEG file.

Moreover, the applet must contain a “Show” button. When this button is pressed, the JPEG image
must disappear from the applet surface, and vicecersa (an on/off toggle behaviour).

2. Basic Menu’s
AWT allows to create simple Graphic User Interface providing standard “pull down” menu’s.
In order to manage this system we need to learn about the hierarchy of the Java menu related items:

MenuBar: the main bar, using appearing horizontaly in the top part of the application’s window.
 Menu: a single high-level menu entry of the top MenuBar, like “File”, “Edit” or “Help”.

 MenuItem: a single entry of a Menu, like “New”, “Open” or “Close” for the “File” menu.

An application usually has only one MenuBar, containing few Menu objects, but each Menu object
can have more MenuItem’s, so the application as a whole will often have a lot of MenuItem‘s.
We could say that, usually, there is one MenuItem object for each function offered to the user.
For this reason the MenuItem class provides the addActionListener() method, in order to react
when the user clicks on the menu entry.

 Analyze the first part of the Expert18 application, which is a simple AWT menù showing the
standard menu entries like “File”, “Edit” and “Help” but not providing any action.

Note that the main window containing the Expert18 application is a Frame object, which
implements the WindowListener interface. For this reason the Expert18 class must define all the
window’s related methods, which are usually triggered by the user’s actions.
For example, if the user clicks on the Windows “Reduce to icon” button (on the top right corner of
the window) the method windowIconified()will be executed. By this mechanism the default
behaviour of the window can be completely changed.
Some useful methods of the Frame class are:

 setSize(): set the size of the window’s frame (in pixels).
 setLocation(): set the location of the window’s frame (in pixels).
 toFront(): brings the window’s frame on the front of all other current windows.

In order to center the window in the middle of the screen is necessary to compare the screen size
with the frame size. These information can be retrieved using following code:

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
int x = (screenSize.width - frameSize.width) / 2 ;
int y = (screenSize.height - frameSize.height) / 2 ;
frame.setLocation(x,y) ;

Another useful menù item is the CheckboxMenuItem class, implementing a menù item that can be
selected or deselected like a standard checkbox. This item is different from the MenuItem since it
provides the method addItemListener(). Morever, when an item is selected a “ticked” marker is
showed on the left of the item’s label, in order to “remember” the selection.

Exercise
Write the second part of the Expert18 application, which must react to the “Open” entry by adding
a new Menu object to the editMenu. This new menù must contain 3 CheckboxMenuItem‘s allowing
exclusive selection. Moreover, when this happens, all the editMenu entries (“Copy”, “Cut” and
“Paste”) must be enabled.
Finally, if the user chooses the “Close” entry, the new menu must disappear (together with his
CheckboxMenuItem items) and all the editMenu entries must be disabled.

3. Managing Files
It is possible to open a File Dialog panel using the FileDialog class, which has three constructors:

FileDialog dialog = new FileDialog(this, “Window Title”) ;
FileDialog dialog = new FileDialog(this, “Window Title”, FileDialog.LOAD) ;
FileDialog dialog = new FileDialog(this, “Window Title”, FileDialog.SAVE) ;

The first two statements are equivalent, since the LOAD option is the default option: these file
dialogs will allow only to load (i.e. “read”) an existing file. The last statement opens a file dialog
which allows to save a file on the hard disk.
When the FileDialog class is made visible (by calling setVisible(true)) the application
“stops” waiting for an input from the user. For this reason, the next statement must be
fileDialog.setVisible(false).

 Analyze the Expert19 application.

To handle system files Java provvides the File class. This class allow to get information about real
files, as well to rename, move or delete them. The Field class introduces two very important fields:

static char separatorChar ;
static char pathSeparatorChar ;

The first field represents the character separating folder and files, for example “\” on Windows. The
second field represent the path separator, which is “;” on Windows.
Using these static fields makes easier (and possible) to write portable code.
The File class works in the same way on files and on folders, for example the following code shows
the content of the current folder, then it creates a new folder named “test”.

File current = new File(".") ;
String[] list = current.list() ;
File subFolder = new File("test") ;
subFolder.mkDir() ;

 Exercise: write the Expert20 application, which receives the folder String parameter using the
Expert19 class, then must print the following information about the files and the subfolders
contained in the input folder parameter:
 name of the file (or directory)
 attributes: d for directory, f for file, r for readonly and w for writeble.
 the date the object was modified the last time.
 the length (size) in bytes of the object.

4. Miscellaneus
 Object Oriented Design: see page 58-59.
 The Garbage Collector: see page 45.
 The JavaDoc tool: see page 31-32.

