Tomcat Quick Start

 Page 5 of 5

Tomcat Quick Start

Table of content

1Tomcat Quick Start

Table of content
1
1. Running Tomcat
2
2. Quick start
2
3. URL addresses
3
Folders
3
Servlets
3
4. Server configuration
4
5. The web.xml file
4
6. Tag libraries
5
7. Servlets
5

1. Running Tomcat

Creating two batch files could be very useful to speed up the start/stop management of the Web Server:

Running the server:
	REM SET CLASSPATH=C:\APPLICATIONS\TOMCAT\WEBAPPS\EXAMPLES\WEB-INF\CLASSES
SET JAVA_HOME=C:\J2sdk1.4.2

SET TOMCAT_HOME=C:\APPLICATIONS\TOMCAT

SET CATALINA_HOME=C:\APPLICATIONS\TOMCAT
call startup

Where startup.bat is given with the default Tomcat installation.

Stopping the server:
	SET JAVA_HOME=C:\J2sdk1.4.2

call shutdown

Notice that setting the JAVA_HOME environment variable is necessary to ensure that shutdown.bat relies on the same VM referred by the startup.bat file.

2. Quick start

The simplest way to upload a new web site on Tomcat is the following:

1. Puy your JSP pages into the webapps folder, then add a link to your first page in the Tomcat index.html file (located in the ROOT folder). For example:

My first JSP web site
This line will link you the index.jsp file in the Tomcat\webapps\mysite folder.

2. Put your class files into the Tomcat\shared\classes folder. For example, if your JSP pages refers to an object named org.web.beans.MyClass, then you must put this object into following path: Tomcat\shared\classes\org\web\beans .

3. Put your configuration file into the Tomcat\bin folder.

This is not the correct way to use Tomcat, but it’s a good way to begin practising without discussing further arguments. The proper way to deploy a webapp is to package it as a WAR file and drop it into the webapps folder.
Remark: the WEB-INF subfolder must be present in order to have Tomcat recognizing your folder as a valid “JSP web site”. So, if your main folder is named mysite, you must create an empty folder named mysite\WEB-INF before starting the Tomcat service. If you don’t, Tomcat will recognize only html pages (JSP pages will not be found).

3. URL addresses

In the previous paragraph we put some JSP pages into the webapps folder, but these pages where available on the following URL:

http://localhost:8080/mysite/index.jsp
Hence we notice that there is a difference between the actual path of the folder (that is webapps\mysite) and the URL address used to reach the page. In order to avoid confusion, refer to the following table:

	URL
	PATH

	http://localhost:8080
	webapps\ROOT\index.html

	http://localhost:8080/demo
	webapps\demo\index.html

	http://localhost:8080/demo/servlet/Test
	…\demo\WEB-INF\classes\Test.class

Folders

If the demo folders does not exist under the webapps folder, then Tomcat looks for the demo folder into the ROOT folder, but the precedence is always given to the webapps folder.

For example, if we have the situation:
webapps\demo\index.html

Exists!
webapps\ROOT\demo\index.html

Exists!

in this case the URL http://localhost:8080/demo will point to the first folder (the one directly into the webapps folder).

Remark: this is the default mechanism, URL can be redirected to different path by specifying the “virtual mapping” in the file server.xml file, or in the web.xml of the target webap.

Servlets

Servelets are automatically referred by the virtual folder servlet: this folder does not exist, it’s just a logical name which tells Tomcat to look in the WEB-INF folder. In example:

href="../servlet/MyClass"
(written in the demo\lib\test_01.jsp page)

Points to the class file:

webapps\ROOT\demo\WEB-INFO\classes\MyClass.class
We could reach the same servlet by the demo\test_02.jsp page, that’s one level higher than the test_01.jsp page (one folder up), in this case we should write:

href="servlet/MyClass"

(written in the demo\test_02.jsp page)

Remark: this is the default mechanism, servlet can be also invoked by using logical names: see the web.xml file description for more information.
4. Server configuration

The Tomcat application is configured by following files (in the conf folder):

server.xml: set the general parameters of the server. Main parameters are:

· UserDatabase: path of the resource which defines administrators (default: “tomcat-users.xml”).
· Modules: the list of many Tomcat module (JK2, AJP etc.).
· docBase: the list of the “virtual directory”. Notice that relative paths start from the webapps folder, hence writing docbase=“ROOT” equals writing “\Tomcat\webapps\ROOT”. For this reason it’s better to use absolute paths. In example:

<Context path="/demo" docBase="C:\html\sites\demo">
maps the URL address “localhost/demo” into the demo folder.

· Apache-Connector: definition of the Tomcat-Apache connection.

web.xml: set the general parameters of the JSP compiling. This file specifies general behaviour for all applications, if one application has is own web.xml file (in the WEB-INF folder), the setting of the custom web.xml will override those specified here (conf\web.xml).

· Servlets: mapping of the servlets classes into logical names.
· JspServlet: the configuration of the servlet compiling JSP pages.
· CGI processing: configuration of other CGI applications.
· MIME Type Mapping: list of file types and related extensions.
· Welcome File: the default start files (“index.html”, “index.htm” & “index.jsp”).
Tomcat-users.xml: defines the usernames (login and password) for the Administration pages, contained in the server\webapps\admin folder, using basic authentication.
5. The web.xml file

Each web application can be configured by the file web.xml (in the WEB-INF folder), which overrides the settings specified by the Tomcat\conf\web.xml file. The main parameters are:

· Security roles: if the webapp allows the Tomcat administration, here are listed the rolenames recognized by the authentication page. These rolenames must match the parameters of the tomcat-users.xml file (otherwise we have a j_security_check error).
· Routing: if a single webapp needs to define some custom routing, or some other custom settings, this is usually done in the web.xml file of the application.

6. Tag libraries

Developers can define custom tags. The files when libraries are defined must be specified in the web.xml file, writing some lines like these:

<taglib>

 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>
Usually libraries are defined in a file having extension TLD. To access the tag library, the JSP page must contain a directive like this:

<%@ taglib uri="/WEB-INF/my-tags.tld" prefix="mine" %>
This allows to write tags of the form:

<mine:tagName name="Param_01" property="Param_02">
When the name, property and all other parameters must be defined in the TLD file:

<tag>

<name>tagName</name>

<tagclass>org.steve.taglib.mine.tagName</tagclass>

…

</tag>
7. Servlets

Usually servlets are configured in the web.xml file, but further details can be defined in custom files. Let’s consider following example (within the web.xml file):

 <servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.webapp.admin.ApplicationServlet</servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>
Where the struts-config.xml file defines the mapping between parameters and classes.

For example, the attribute action="/users/saveUser" of the HTML form could be mapped as follows (within the struts-config.xml file):

 <action path="/users/saveUser" type="org.test.users.SaveUserAction" />
Copyright © 2000 - 2022 Stefano Adriani

 adriani.altervista.org

