SQL Quick Start

5

SQL QUICK START

We are going to use this notation about capitalisation:

· WORD: denotes a SQL key word, which must typed exactly like in the example
· Word: identifies a variables, which value will depend on your actual database

1. Basic queries

Assuming we have a table “Books” containing data about books, we could perform following queries:

SELECT Title FROM Books WHERE Author = ‘Jung’;

SELECT Title, Author FROM Books WHERE Pages >= 100;

SELECT * FROM Books WHERE Pages >= 100;

SELECT DISTINCT * FROM Books;

SELECT Title FROM Books ORDER BY Author;
Following operators are recognized: < , <= , > , >= , = , != .

The WHERE clause accepts following statements:

… WHERE Number > 3 OR Code < 1000;

… WHERE Number > 42 AND Number < 666;
(on some DB this could be: … WHERE Number BETWEEN 42 AND 666)
… WHERE Name IN (‘Smith’, ‘Brown’, ‘Lewis’);

… WHERE Name IN (SELECT Author FROM AuthorsTable);

… WHERE Name LIKE‘%King’;

… WHERE Name LIKE ‘%King%’;

… WHERE Name LIKE ‘King%’;
Where the last queries correspond respectively to fields value ending with “King”, containing “King” and beginning with “King”. For the INNER JOIN clause we have 2 different grammars:

SELECT Title FROM Books INNER JOIN Producers ON Books.Id = Producers.Id;

SELECT Title FROM Books, Producers WHERE Books.Id = Producers.Id;
(The 1st is used by MSAccess; the 2nd by PostegreSQL)
Anyway it is always used the notation <table name>.<column name> to solve ambiguity.

It is possible to define Aliases in order to define the caption (headings) of the output:

SELECT Title AS Titolo, Author AS Autore FROM Books;

(PostegreSQL)

SELECT Title Titolo, Author Autore FROM Books;

(Standard)
Some DB allow to use aliases also when doing comparisons, for example (here Foo is the alias):

SELECT BookId Foo FROM Books, Producers WHERE Books.Foo = Producers.Id;
Remark : strings, dates and characters literals are expressed using quotes (like ‘foo’, ‘26/02/1970’ etc.), numbers are expressed without quotes. For booleans it is the same to use true, ‘true’ or ‘t’.

2. Creating tables

Introducing following issue: PRIMARY KEYS and FOREIGN KEYS.

To create a table it is necessary to use the command CREATE TABLE as below:

CREATE TABLE Table (var1 INT, var2 DECIMAL(3,1), var3 CHARACTER(10));
In this case a table with 3 columns will be created: var1, var2 and var3. Some columns types are:
· INT or INTEGER or INT4: common integer types (4 bytes)
· DECIMAL (m,n) : decimal types (where m = total digits, n = number of decimal digits)
· CHARACTER(n) or CHAR(n) : string types (where n = lenghth of the text field)
· VARCHAR(n): variable length string types with upper limit (where n = maximum limit)
· BOOLEAN or LOGICAL: a boolean type (can be only false or true)
· DATE : a date type (usually in the form gg/mm/yyyy)
· TIMESTAMP : a date-time type (usually in the form gg/mm/yyyy hh:mm:ss)
· OID : stores a reference (the Object ID) to a BLOB type

After each column type some column constrains can be specified, the most common are:
· NULL: this column can hold a null value (this is the default definition if not specified)
· NOT NULL : this column can not hold a null value
· DEFAULT: default value to use if the INSERT clause does not specify any value. Remark: if the column is a foreign key, this value must be a valid reference to an existing value in the primary key!
· UNIQUE: it is forbidden to have duplicate values in this column
· PRIMARY KEY: implies UNIQUE and NOT NULL (this column identifies each row of the table)
· REFERENCES Table(Column): this column must macth another column in another table. The other column must be a PRIMARY KEY in the other table (which must be created before this table).
· REFERENCES…ON DELETE action: performed when a referenced row in another table is deleted
· REFERENCES…ON UPDATE action: performed when a referenced row in another table is updated
· CHECK: an integrity constrains which new rows or update must satisfy (boolean expression)

Some common action options are:
· SET DEFAULT: set this column to his defalut value
· CASCADE: update this column in the same way of the referred one (delete it or update it)
· SET NULL: set this column to the null value (mind to make sure the null value is allowed!)

Hence a table definition could be something like the following:

CREATE TABLE Messages (

IDMsg
INT PRIMARY KEY,

Msg

CHARACTER(200),

Priority
INT CHECK (Priority > 10),
IDLanguage INT REFERENCES Languages(IDLanguages)ON DELETE CASCADE,

Visible
BOOLEAN DEFAULT false
);
If many columns have similar definitions is useful to rely on the table constrains:

CREATE TABLE Table (

var1 INT, var2 DECIMAL(3,1), var3 CHARACTER(10)

UNIQUE (var1,var2)

);
Following constrains can be specified: PRIMARY KEY, UNIQUE, CHECK, FOREIGN KEY, REFERENCES.

To delete a table just use:

DROP TABLE TableName;
3. Managing Data

It is possible to use SQL commands to insert data into tables:

INSERT INTO Table VALUES (1,'Name',30,'14/03/1949',’t’);
This command will fill one table’s row using the sequence of values specified, but only if these values match the corresponding fields. In example, following commands are fine:

CREATE TABLE Table (Number INT, Name CHAR(10), State BOOLEAN);

INSERT INTO Table VALUES (1,'foo',’t’);

INSERT INTO Table VALUES (1,'foo');

INSERT INTO Table VALUES (1,42);
Because in the last case the DBMS will put the string ‘42’ in the field Name. Things are different if:

INSERT INTO Table VALUES (‘test’,’foo’);
An error will raise when the DBMS will try to put the value ‘test’ into the numeric field Number.

To avoid such a problem it is possible to use following command:

INSERT INTO Table (Number, State) VALUES (1,’t’);
Remember that not specified values will be set to their default values if the DEFAULT clause has been used.

To save time, following statements are allowed as well:

INSERT INTO Table1 (Id,Date) SELECT MyId,MyDate FROM Table2 where …

INSERT INTO Table1 DEFAULT VALUES ;
When using previous statement, remember that if the table has a primary key, this can not be filled with any default value!

To change the values stored in one table it is necessary to use the UPDATE command:

UPDATE Table SET(Column1=<new value>,Column2=<new value>) WHERE …
In example, following statements are allowed:

UPDATE Table SET Present='t',Date=NULL,IDCustomer=NULL WHERE Code = 17;
To alter the structure of a table use statement like the following:

ALTER TABLE Table ADD
(ColumnName DECIMAL(4,2) NULL);

ALTER TABLE Table ALTER COLUMN ColumnName SET DEFAULT 0;

ALTER TABLE Table RENAME COLUMN ColumnName TO NewName;

ALTER TABLE Table ALTER ColumnName SET DEFAULT 0;

ALTER TABLE Table ALTER COLUMN ColumnName SET DEFAULT NULL;
Finally, to delete rows from one table use following command:

DELETE FROM Table WHERE …
4. Relational concepts

Let’s consider following tables:

	ID
	NAME
	CITY
	
	COMPANY
	EMPLOYEE_ID

	1
	John
	Atlanta
	
	Master
	3

	2
	Mike
	Saigon
	
	Morpheus
	5

	3
	Steven
	New York
	
	NorthWind
	4

	4
	Janet
	London
	
	Aeonware
	Null

	5
	Catherine
	Berlin
	
	Graal
	3

In such a case the column ID in the first table could be a PRIMARY KEY, which means it will be NOT NULL and UNIQUE. The second table will hold only a reference to the person’s data, given by the EMPLOYEE_ID field, in such a case this column is a FOREIGN KEY to the primary key ID in the first table.

Note that the foreign key can hold null values or duplicates entry!

It's also possible to create views:

CREATE VIEW ViewName AS SELECT Column FROM Table;
5. Managing BLOBS

BLOB (Binary Large ObjectS) it is a paradigm allowing to store and retrieve long binary files from/into table’s columns, this is very useful when managing images (e.g. JPG files) or other big files.

Each database uses a different dialect to handle BLOBS, here we explain the main features using the syntax offered by PostgreSQL. Let’s consider following statements:

INSERT INTO table (column) VALUES (lo_import('/home/test.jpg'));

SELECT lo_export(table.column, '/home/test.jpg') from vhs WHERE …
UPDATE table SET column=lo_import('/home/test.jpg') WHERE …
The 1st statement takes a JPG file from the folder home and put it into the specified column in the target table. Note that, actually speaking, the target table will store only a reference to the image, named oid (Object ID). The real file will be stored in an internal table (PostgreSQL uses pg_Largeobject).

The 2nd statement will retrieve the image and save it to disk, while the 3rd statement will update the BLOB in the database.

6. Advanced functions

Data can be aggregated using the syntax:

SELECT FUNC(ColumnName) FROM …
Where FUNC could be something like:
· SUM(Column):
· AVG(Column):
· MAX(Column):
· MIN(Column):
· COUNT(*):

In a similar way, the DEFAULT ‘now’ and now() keywords can be handy.
7. SQL Dialects

PostegreSQL

· It is case sensitive for string values (i.e. searching “Pippo” is different from searching “PIPPO”)

· The UNIQUE constrain is managed by creating automatically a unique index for the column

MSAccess

· Use ‘ * ’ instead of ‘ % ’ as jolly character in LIKE queries

· Use DISTINCTROWS instead of DISTINCT
· Use ORDERED BY instead of ORDER BY
Others DBMS

· Can use double quote (“…”) instead of single quotes (‘…’)
· Can use SELECT ALL instead of SELECT *.
Copyright © 2000 - 2022 Stefano Adriani

 adriani.altervista.org

