JSP Quick Start

 Page 17 of 17

15-Feb-22
ver 1.2
BRIEF INTRODUCTION TO

JAVA SERVER PAGES

TECHNOLOGY
Table of contents

2Table of contents

1 JAVA SERVER PAGES
3
1.1 Introduction
3
1.2 JSP Overview
3
1.3 Using scripting tags: Hello Mate!
4
1.4 Using JavaBeans
4
1.5 XML-like syntax
6
1.6 Servlets
6
1.7 JSP Features
7
1.8 Session management
7
2 PROGRAMMING JSP SCRIPTS
8
2.1 JSP directives
8
2.2 The page directive
8
2.3 The include directive
10
2.4 The tag library directive
10
2.5.1 Scripting elements: declarations
11
2.5.2 Scripting elements: expressions
11
2.5.3 Scripting elements: scriplets
12
2.6 Merging HTML code
13
2.7 Comments
13
3 ACTIONS
15
3.1 Implicit objects
15
3.2 Forward action tag
15
3.3 Include action tag
16
3.4 JavaBeans
16
APPENDIX A
17
Web references
17
JSP containers
17
Java application servers supporting JSP
17
Tools for performance testing
17

1 JAVA SERVER PAGES

1.1 Introduction

In the traditional CGI approach dynamic pages were generated using a HTTP server receiving the request from the browser, and then spawning a new CGI outer process (running outside the web server, on the same machine). The HTML frame was still used as template, governing general layout and containing embedded script code to generate dynamic content. At the end of the CGI process the result was sent to the HTTP server, and response was then sent to the browser.

The main CGI techniques are:

	TYPE
	FROM
	LANGUAGE
	SUPPORT
	LOOK

	ColdFusion
	Allaire
	Script
	Windows/UNIX
	HTML-like

	ASP
	Microsoft
	Many different scripts
	NT
	C-like

	SSJS
	Netscape
	JavaScripts – compiled !
	Portable
	OO C-like

	PHP
	Open Source
	Script
	NT/UNIX
	C-like

Java servlets use a different approach: when the HTTP server starts up it runs a servlet container or servlet engine (running a JVM), which creates a thread to handle each request, corresponding to a servlet executing within the container.

This avoids running a different process for each request sent to the server, saving memory and other system resources. Sometimes (for example if the HTTP server itself is written in Java) the servlet container can run as as a part of the server process, for even greater performance.

The only disadvantage is that to change the page content it’s necessary to rewrite the source code of the servlet used to generate the dynamic page: this problem is solved by JSP technique.
1.2 JSP Overview

JSP enables developers to maintain a strict separation between the presentation elements of a web application and its underlying implementation. This is obtained using JavaBeans, special objects whose implementation is designed to promote modularity and reusability.

Presentations are designed using HTML and HTML-JSP scripting tags (inspired to ASP tags), while custom JavaBeans tags (of XML type) allow interfacing with JavaBeans and tag library code, taking care of the actual implementation of the architecture.

When a web server receives a request for a JSP document, the servlet creates a customized HTML page from the JSP page and sends it to browser: for this reason, the View Source command of the browser will show an HTML file, not the original JSP file containing the Java instructions.

1.3 Using scripting tags: Hello Mate!
Let’s see a first example of a JSP page usingTomcat servlet container, using scripting tags:

	<HTML>

<BODY>

<%

String word = request.getParameter("name") ;

if (word == null) word = "Mate" ;

%>

Hello, <%= word %> !

</BODY>

</HTML>

To open this JSP page:

1) Put your name.jsp file in a sub-dir of the Root folder in the Tomcat folder.

2) Run startup.bat in Tomcat folder: this runs the servlets container.

3) Open your file as //localhost/path/name.jsp, where path is the relative path from the Root folder.

4) Try again with the URL //localhost/path/name.jsp?name=Pippo : the message will change.

1.4 Using JavaBeans

JavaBeans provide the separation of presentation from implementation. The java class is compiled and put in a package accessible from the java classpath: this code will take care of the implementation of the JSP page. Then JSP JavaBean tags are used in the JSP page to refer to the JavaBean: these tags represent the presentation of the page.

Each JavaBean tag begins with <jsp:, specifying to the server that what follows refers to a JavaBean. Let’s see an example of a JavaBean tag:
<jsp: useBean id=”Pippo” class=”aeon.test.MyClass”/>
This tag associates the identifier Pippo to the class file, this identifier may be used to refer to the Bean later. The main jsp tags are :

	TAG
	INPUT PARAMETERS
	DESCRIPTION

	useBean
	id, class
	identifier, class name

	setProperty
	name, property, param
	id, java’s reference, URL parameters

	getProperty
	name, property
	id, java’s reference

NOTE: the property parameter of a jsp tag corresponds to the java’s reference in the class definition. For example, if the Bean contained the following line:

public String getValue() { return word ; }
Then writing property=”value” would specify to the command getProperty to call the method getValue() in the Bean class. Note the different case format in the two expressions.

Using custom tags is possible to obtain the same result of the previous example:

	package aeon.test ;

public class Hello implements java.io.Serializable {

 String ss ;

 public Hello() { ss = "Mate" ; }

 public String getValue() {

 return ss ;

 }

 public void setValue(String word){

 ss = word ;

 }

}
	<HTML>

<BODY>

<jsp:useBean id="mine"

 class="aeon.test.Hello"/>

<jsp:setProperty name="mine"

 property="value" param="who"/>

Hello, <jsp:getProperty name="mine"

 property="value"/> !!!

</BODY>

</HTML>

Try this example with the URL //localhost/path/name.jsp?who=Pippo .

1.5 XML-like syntax

JavaBeans tags use the XML syntax, which offers two types of tags: those containing a body and those that do not (hence ending the first tag with a "/" mark):

<jsp:forward page="mine.jsp" />

no body inside
<jsp:useBean id="mine" class="aeon.test.Hello">

containing a body

<jsp:getProperty name="mine" property="value"/>

</jsp:useBean>
The customized namespace jsp: identifies the JavaBeans tags: another XML application could use a different namespace, this allows multiple different XML tags to appear in the same document, by specifying the correct namespace permits (see 2.4) to incorporate an extend tag library into a JSP page. Tags can be embedded one another as in the following example:

<jsp: setProperty name="mine" property="string" value="<%= previousVisit %>"/>
1.6 Servlets

When the HTTP server receives the request of an URL mapped to a servlet class, the server forwards the request to the servlet container, which in turn forwards it to the an instance of the related servlet. Furthermore the container creates two more objects: one representing the request, the other representing the response.

Then the container passes these objects to the methods doGet() and doPost() (service methods) of the servlet class, which performs the required computations and merges its reply with the HTML template. When the service methods have finished running, the container sends the document to the HTTP server.

Simultaneous requests to the same servlet are handled running multiple threads of the service methods.

Things are similar for JSP pages implemented by servlets: each request of a JSP page is forwarded to a special servlet, named the page compiler servlet, while the container is then referred to as the JSP container. The compiler finds the requested JSP pages and compiles them (see below), producing a new servlet for each page, whose purpose is to generate the dynamic content. This is the main difference: the servlet related to the JSP page is generated dynamically, while ordinary servlets are compiled before the first request.

When the page compiler reads the jsp file, it translates HTML tags into Java Strings, JavaBeans into instances of objects and simply copies the scripting elements. This source code is written into the service methods of the new servlet, then the page compiler calls the Java compiler to generate the class file of the servlet. Finally, the page compiler invokes the servlet, which generates the requested document.

All subsequent requests for this page will be passed directly to the servlet, invoking the page compiler only if the servlet is older than the corresponding JSP page.

1.7 JSP Features

HTTP standard protocol often requires a header (containing information for setting cookies, controlling caches etc.) before the body of the html page. Furthermore, once the web server begins sending back the required document, if an error occurs the browser gets the first part of the page followed by an error message.

These limitations are overcome by the JSP architecture: pages are buffered before being sent back to the browser, this improves the following features:

 The jsp code setting (for example) a cookie can be put at any point of JSP page, not necessary at the beginning: it will be located in the header anyway, since this is still contained in the buffer.
 The generated page can be discarded at any point of the processes, avoiding partially documents to appear on the browser. A message error can be sent instead.

This buffer size is usually 8K: if it becomes full during the page processing then it is emptied by sending his content to the browser. In this case JSP works exactly as standard HTTP: no more changes are possible to what has been sent (e.g. it’s not possible setting other cookies).

1.8 Session management

HTTP protocol is stateless: when multiple pages are viewed, the web server is not able to keep track of the user previous user’s selection (i.e. keep track of the session). This problem is usually solved rewriting the URL of the hyperlinks in order to pass parameters from one page to another, or storing cookies (short strings of data, usually containing a session ID) to the browser. Such data will be sent back to the server with each subsequent request of a web page hosted on that server.

JSP container instances a special object, named Httpsession, which contains all the session information: since an instance of this class exists for each session (i.e. user) it’s important to optimize the memory’s size required by these objects. For this reason usually the JSP container allows to set a time-out parameter, defining when an idle session has to be considered expired.

2 PROGRAMMING JSP SCRIPTS

2.1 JSP directives

There are four main types of JSP tags: directives tags, scripting tags, comment tags and action tags (discussed in chapter 3).

Directives tags convey general information about the page, therefore they do not produce any visible output. They permit two different syntax: basic syntax and XML syntax. Let’s see an example using the page directive.
	BASIC SYNTAX

	<%@ page attribute1=”value1” attribute2=”value2” … %>

	XML SYNTAX

	<jsp:directive.page attribute1=”value1” … />

Note that, unlike HTML, a syntax error or an unrecognized tag is NOT ignored: if this happens, a translation-time error occurs when generating the corresponding servlet. Furthermore, in JSP attributes must be written between quotes.

2.2 The page directive

This is probably the most complicate directive, since it owns eleven different attributes: JSP allows to spread this attributes among multiple tags, but each attribute must appear only ONCE in the JSP page1. The only exception is the import attribute (described after the table) which can be used many times.

	Attribute
	Description
	Example
	Default

	info
	Page information available to the container.
	info=”My JSP pageTM”
	””

	language
	Scripting language used in the JSP page
	language=”java”
	”java”

	contentType
	Page format (HTML, XML, PLAIN etc.) & character set.
Note: the page must be written using the selected character set. All characters before this tag must be compatible with the final character set.
	contentType=”text/xml”;

charSet=ISO-8859-1
	”text/html”

ISO-8859-1

	extends
	Superclass used to produce the servlet that will generate the JSP page.
Note: it’s suggested to do NOT specify this attribute: each container will select automatically his own best superclass.
	extends=”aeon.JspPage”
	NONE2

	session
	Registers this page among the session object users.
	session=”true”
	”true”

	buffer
	Sets the buffer size. It’s possible to turn off the buffer writing ”none” .
	buffer=”12kb”
	”8kb”

	autoFlush
	Enables automatic flushing of the page buffer: if set to ”false” an exception occurs when the buffer is full.
	autoFlush=”false”
	”true”

	isThreadSafe
	Enables servlet to multi-thread: if set to ”false” subsequent requests are processed sequentially (in this case the container may create multiple instances of the page’s servlet).
	isThreadSafe=”false”
	”true”

	errorPage

	Page to be displayed if an error occurs while processing the JSP page. Absolute URLs start with ”/”, relative do not.
	errorPage=”err/fail.jsp”
	NONE2

	isErrorPage
	Specifies the current page as an error page, enabling access to exceptions.
	isErrorPage=”false”
	”false”

The import attribute works exactly as the related Java’s attribute: more packages can be imported using a single statement, this is achieved by comma separation. For example:

<%@ page import=”java.util.*”, ”java.awt.*” %>
This allows to use base names when referring to Java scripts or JavaBeans. When Java is selected as the script language by the language directive, the following packages are automatically imported: java.lang, javax.servlet, javax.servlet.http, javax.servlet.jsp.

2.3 The include directive

It can also be used by the two possible syntax:

	BASIC SYNTAX

	<%@ include file=URL %>

	XML SYNTAX

	<jsp:directive.include file=URL />

This directive includes the content of the specified file before compiling the current JSP page, hence reference to variables between nested pages is allowed, i.e. the different source codes are merged together. As usual, absolute URL begins with ”/”. Of course the included page must be written in the same script language of the original page.
Note: as specified in 1.6, the servlet is recompiled only when older then the JSP page. This comparison interests only the original page: if the included page is modified, updating the originale page is necessary in order to recompile the servlet.
2.4 The tag library directive

This directive allows two syntax as usual:
	BASIC SYNTAX

	<%@ taglib uri=libraryName prefix=namespace %>

	XML SYNTAX

	<jsp:directive.taglib uri=libraryName prefix=namespace />

Once a customized tag library has been specified, it’s possible to include corresponding tags (following XML convention) using the namespace defined in the prefix. For example:

<%@ taglib uri=”custom/myTags” prefix=”aeon” %>
permits, for example, to use the tag getCustomer from that library by writing <aeon:getCustomer/>.

Note that, since prefixes must be unique in a JSP page, multiple libraries can be used even if sharing same tag names. Furthermore, standard implementation of JSP pages does NOT allow references to remote URL addresses: tag libraries should always be stored on local server.

2.5.1 Scripting elements: declarations

Declarations are written as in the following examples (both syntax) :

<%! private int x=0, y=0; static public String who=”ft”; %>
<jsp:declaration> private int x=0, y=0; </jsp:declaration>
Wherever a declaration is written in the JSP page, it will become an attribute of the servlet class, i.e. the variable can be referenced also by others scripts appearing earlier in the page.

Declared variables are associated with the page itself, not with individual requests of the page: each thread of the servlet will share the same value of the variable. However, non static variables will be different among many instances of the servlet if the isThreadSafe page directive is set to ”false”.
Note: since it’s not generally possible to predict the name of the servlet class corresponding to the JSP page, static methods have little utility in the context of JSP.

Two special methods can be optionally implemented by each JSP page:

public void jspInit() { … }

public void jspDestroy() { … }
The first is invoked when the container instances the page’s servlet (i.e. first request of that page) but before starting to generate the HTML output. The second is invoked when the container unloads the servlet, for example if the page has not been requested recently and the container needs to reclaim some resources (or simply the web server shuts down).

2.5.2 Scripting elements: expressions

The two sintax for this scripting tag are:

<%= expression %>
<jsp:expression> expression </jsp: expression>
Note that NO semicolon is provided at the end of these codes: this is because Java’s statement are defined by a semicolon, i.e. expressions ending with a semicolon would be read as statements, hence returning no value. Any type of expression is allowed: custom class methods toString() are used to convert each expression into a string.

Since expression are not statements, in order to manage a conditional output the tertiary conditional operator must be used instead of the if clause. For example:

<%= (hours <12) ? ”AM” : ”PM” %>
2.5.3 Scripting elements: scriplets

These are usually the main content of any JSP page. The syntax for scripting tags are:
<% scriplet %>

<jsp:scriplet> scriplet </jsp:scriplet>
Scriplet can contain any standard Java code, including creation of new instances, methods calls etc. A code block, identified by a pair curly braces { … }, can contain some HTML code or other tags standing outside the scriplet. For example:

<BODY>
<%
MyObject one = new MyObject() ;

{

int id = one.getIDNumber() ;

MyObject two = new MyObject() ; %>
<H2> YOUR OBJECTS NAMES: </H2>

Second: <%= two.getName() %>

 <% } %>
First: <%= one.getName() %>

</BODY>
Some important comments:

 Reference to the object two is allowed only within the code block { … }, since the instance two is created inside the block (this reference must be in scope). Reference to this instance outside the code block would cause a compile-time error when generating the servlet.
 Reference to the instance one is possible also outside the code block { … }, since one is defined outside the block (the scope of such object is the entire page).

Note: the method responsible for the final HTML output is the jspService() method of the servlet. This method is implemented using the Java code written in the expressions, scriplets and JavaBeans, therefore these tags are subject to scoping restrictions introduced via scriplet. Directives and declarations do not produce any visible output, so they are not affected by scoping restrictions.

2.6 Merging HTML code

Using scripting blocks allows to insert HTML code in scope between scriplets. For example:

<TABLE>
<% for (int n = 0; n < 20; n++) { %>

<TR><TD><%= n %></TD><TD><%= Math.sqrt(n) %></TD></TR>
<% } %>
</TABLE>
This code creates a table having 20 rows, showing the square root of each number. Note that this permits to catch exception directly inside a JSP page: in this case the JSP container will not forward any error to the JSP errorPage. For example:

<% try { %>

<P ALIGN=center>calling unsecure method:</P>

<P>Result is: <%= Math.sqrt(n) %></P>
<% } catch (NumericException e) { %>
<P> Please check your input: <%= n %> must be positive! </P>
<% } %>
This is a very powerful feature introduced by language scripts, allowing to create dynamic pages full of customized data with short Java code. On the other hand, this approach does not keep separated implementation from presentation, requiring both HTML and programming skills.

2.7 Comments

Three different type of comments are available:

	TYPE
	SYNTAX
	CONTAINER
	SENT TO

	HTML
	<! comment >
	Compiles the content
	Browser

	JSP
	<% comment %>
	Ignores the content
	None

	SCRIPT

	<% /* comment */ %>

<% // comment %>
	Ignores the content
	Source code

It’s strongly suggested to avoid the last type of script comment: the container could not translate correctly the statement if some code appear before the line delimiter. For example:

Is <%= Bean.getID() // to confirm %><P> your ID number ?</P>
Here the container could ignore all the code after the // mark. This feature suggests to write the end tag %> in the next line (after the carriage return), i.e. leaving blank the line after the comment “to confirm”.

3 ACTIONS

3.1 Implicit objects

Action tags manage transfer control between pages, specify applets and interact with JavaBeans. All custom tags defined via tag library take the form of JSP action tags. Action tags support only the XML-based syntax.

Action tags are helped by implicit objects, automatically available within any JSP page:

	OBJECT
	CLASS
	DESCRIPTION

	page
	HttpJspPage
	Page’s servlet instance

	config
	ServletConfig
	Servlet configuration

	request
	HttpServletRequest
	Request from the browser (with parameters)

	response
	ServletResponse
	Response data

	out
	JspWriter
	Output stream for page content

	session
	HttpSession
	User session data

	application
	ServletContext
	Data common to all application page

	pageContent
	PageContext
	Context data for page execution

	exception
	Throwable
	Java exeption

These objects have methods which allow to retrieve or set parameters, headers, cookies, forms, browser address etc…

3.2 Forward action tag

<jsp:forward page=”localURL” />
This action stops the generation of the current page and transfers control to the new page’s servlet. The user will not see any difference in the process, i.e. the browser will receive a page from the requested URL. Parameters can be forwarded as follows:

<jsp:forward page=”localURL” >

<jsp:param name=”paramName1” value=”paramValue1”/>

<jsp:param name=”paramName2” value=”paramValue2”/>

…

<jsp:forward page=”localURL” />
3.3 Include action tag

<jsp:include page=”localURL” flush=”true” />
The flush attribute determines whether or not the output buffer for the current page is flushed prior including the content from the included page. Since the include tag is processed when the servlet is running (and not just once when the page is compiled) there are some differences between this tag and the related directive tag.

 If the included page is updated, also the “parent” page is updated and recompiled.
 Parameters can be passed exactly as with the forward tag.
 This tag refers to the indicated URL rather than the content of an another source document, hence it can be used to include dynamically generated output, such as from a servlet or a CGI program.
3.4 JavaBeans

Let’s see some examples of JavaBeans:

<jsp:useBean id="mine" class="aeon.test.Hello" scope=”page” />
Where “scope” sets the validity range of the Bean, between two possibilities: page (Bean valid only in the current JSP page) or session (Bean shared among different JSP pages of the same session). Another remarkable feature of JavaBeans is the possibility to get automatically parameters from the query string of the HTTP request, for example

<jsp:setProperty id="mine" property="*" />
if the HTTP request contained the parameter customerID=17, and if the JavaBean had a method named setCustomerID(), then this would be automatically invoked by the implicit command setCustomerID(17).
APPENDIX A
Web references

Java platform

java.sun.com/jdk

Hewlett Packard Java

www.unixsolutions.hp.com/products/java

Home for JSP

java.sun.com/products/jsp

Some JSP notes

www.taglib.com

JSP tutorial

java.sun.com/products/jsp/docs.html

JSP containers

Tomcat home page

jakarta.apache.org

JRun home page

www.allaire.com/Products/Jrun

Multiple scripting languages

www.plenix.org./polyjsp

Java application servers supporting JSP

J2EE Sun home page

java.sun.com/j2ee

An Open Source

www.exoffice.com

IBM’s WebSphere

www.ibm.com/software/webservers

Oracle 8i Jserver

www.oracle.com/Java

Tools for performance testing

Several open source

java.apache.com

Allaire’s free ServletKiller

www.allaire.com/products/jrun/ServeletAddOn.cfm

VeloMeter open source

www.binevolve.com/velometer/velometer.vet

1	 For this reason, if include is used, directives should be only in the FIRST page.

2	 NONE: the default value is implementation-dependent

Copyright © 2000 - 2022 Stefano Adriani

 adriani.altervista.org

